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ABSTRACT

This report presents a summary of the theoretical and experimental work performed
in our research program on deformation and damage of high temperature composites. The
theoretical part focused on two areas; modeling of fatigue damage in metal matrix
composite and laminates by shakedown and nonlinear optimization, and refinement of the
unified viscoplasticity theory formulated last year for homogeneous materials, in order to
model certain phenomena observed in high temperature experiments of unreinforced
metals. Implementation of the new viscoplasticity theory for the phase sin the Periodic
Hexagonal Array model for unidirectional composites was an important part of the
research. Progress in these theoretical aspects of the program is summarized. The report

also describes achievements in the experimental program.
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1. INTRODUCTION

The main goal of this research is to understand and evaluate the deformation and
damage mechanisms evolving in high temperature composites under thermomechanical
service loads. The research program aims at examining a specific composite system with a
ductile matrix which has the potential of providing a better material for jet engine parts
and other high—temperature applications. In past progress reports, we described a new
unified thermoviscoplasticity theory based on overstress for homogeneous materials to
represent the matrix and fiber phases. This theory can be applied to the phases of any
micromechanical model to obtain the local stresses and overall response of unidirectionally
reinforced composites. A complete discussion of the theory is given by Shah (1991).
Moreover, a new model for fatigue damage in metal matrix composites and laminates based
on shakedown and nonlinear optimization has been developed. In parallel, our efforts
concentrated on assembling the high—temperature facilities and procurement of the
specimens in preparation for the experiments. The following major accomplishments were
achieved:

- Development of a thermoviscoplasticity theory with time recovery effects for
homogeneous materials.
- Implementation of the rate—dependent constitutive equations of the phases in the

Periodic Hexagonal Array model and the ABAQUS finite element program.

- Modeling of fatigue damage in metal matrix composites and laminates with regard
to experimental observations and a bimodal damage theory.
- Assembling the high temperature equipment.

- Fabrication of tubular samples of a fiber—reinforced superalloy composite.

A summary of these developments is presented in the sequel.




2. THEORETICAL WORK

2.1  Thermoviscoplasticity of Fibrous Composites

2.1.1 Micromechanical Models

Evaluation of overall properties of composite materials is best done with appropriate
micromechanical models which can incorporate the inelastic constitutive relations that
describe phase behavior, and which reflect the dominant deformation mechanisms in the
microstructure. The selection of models which satisfy these requirements was motivated by
our past experience with modeling of experimentally observed elastic—plastic behavior of
fibrous B/Al composite systems (Dvorak et al., 1988, 1990). In particular, the periodic
hexagonal array (PHA) model (Dvorak and Teply 1985, Teply and Dvorak, 1988), and the
bimodal plasticity theory (Dvorak and Bahei—El-Din, 1987) were chosen and adapted for
this purpose.

In the PHA model, the centers of the aligned fibers are assumed to be arranged in a
periodic hexagonal array in the transverse plane. The circular cross sections of the fibers
are approximated by (6 x n) polygonal cross sections, which tend to converge rapidly when
the integer n > 1 increases. The hexagonal array is divided into identical unit cells.
Appropriate periodic boundary conditions are prescribed for these cells such that the
solution for a single cell can be used to generate the deformation field in a fibrous
composite subjected to uniform overall strains or stresses, and to a uniform thermal
change. Figure 1 illustrates the PHA model for two subdivisions of the unit cell. Coarser
subdivisions are adequate if overall response alone is of interest, whereas more refined
meshes are used in evaluation of local fields in the phases and at the fiber—matrix interface.
Models of this kind have the ability to approximate the variable local fields, which
determine many aspects of the overall response, and are therefore preferable to the models

which rely on averages of local fields, such as the self—consistent or Mori—Tanaka




approximations. Typically, the solution is found with the ABAQUS finite element
program. However, in the present research the problem was reformulated as described
below, hence the solution can be now found in a more efficient manner, without inelastic
finite element routines.

The bimodal plasticity theory was originally deduced, in part, from experimental
observations of elastic—plastic behavior of unidirectional B/Al systems. More recently, it
was applied to several high—temperature systems, and extended to accommodate
viscoplastic behavior of the matrix phase (Hall 1989). The theory recognizes two distinct
deformation modes, the fiber dominated (FDM) and the matrix—dominated (MDM) mode.
In the fiber mode, the local fields in the composite are assumed to be approximately
uniform, and the overall response is evaluated from an averaging model. In the matrix
mode, the dominant mode of deformation is approximated by smooth shearing on planes
parallel to the fiber axis. Each of the two modes has a separate branch of the overall yield
surface, and is activated according to the current position of the loading vector. Figure 2
shows examples of the surfaces in the plane stress space. The size and shape of the MDM
yield surface does not depend on fiber properties and volume fraction, but these parameters
do affect the FDM surface. In systems reinforced with fibers of high longitudinal shear
modulus, such as boron, silicon carbide, or tungsten, the FDM surface contains a large part
of the MDM surface which in turn controls the onset of yielding, and subsequent plastic
flow. In contrast, systems reinforced with carbon fibers of low shear modulus may have a
FDM surface which lies entirely within the MDM branch. The matrix mode is not present
in such systems, but the FDM model assumptions may no longer hold and the PHA model

is again indicated.




2.1.2 Uniform Fields and Phage Eigenstrains in Heterogeneous Media
In a series of recent papers, Dvorak (1983, 1986, 1987, 1990a) examined the

consequences of his discovery of the existence of uniform strain fields in heterogeneous
media. The recent papers (1990, 1992a, 1992b), and a related review paper (Dvorak 1991),
establish connections between mechanical and eigenstrain—induced local fields, and regard
plastic strains as phase eigenstrains. A solution scheme for the PHA and FDM models was
developed as a result of this investigation.

The new method may be summarized as follows. Consider a representative volume
of the composite aggregate under uniform overall stress o or strain ¢, and a uniform
thermal change df. A subdivision of the RVE is made such that in each subelement
r =1, 2,...N, the actual local field is approximated by uniform stress, and the stress field in
the entire domain becomes piecewise uniform. Some initial loading has taken place in the
elastic and inelastic deformation ranges. Then, an increment of overall uniform strain de
or stress do is applied from the current state. The total strain increment der in each
subelement is decomposed into elastic strains Arde caused by external loads, and total
strains which incorporate the local (uniform) inelastic strains together with the elastic
strains transmitted from all other subelements. The same decomposition is applied to the

local stresses:

N

de = Arde+ardd+ ) D ded, (1)
8=1
N

do; = Brdo+ b do+ Y F, dd;, 2)
s=1

R
dog = L de?,

where A; is strain concentration factor, a; is thermal strain vector, and Ls is the elastic




stiffness. The tensors D;s and Fyg are eigenstrain and eigenstress concentration factors
which evaluate the average strain or stress in subelement r due to a single uniform unit
eigenstrain or eigenstress in subelement s, while the composite is fully constrained but not
otherwise loaded. This is combined with the phase constitutive equation, evaluated in each
subelement at the current local stress. In particular, the total strain increment is

additively decomposed, der = de€ + de? , and the inelastic part takes the form

dfrs) (.lr—Mr) dar""‘(’r—mr) do,

(3)
de® = G;doy + g db,

where A4 denotes the instantaneous compliance, M the elastic compliance, e the
instantaneous coefficient of thermal expansion, and m; the elastic coefficient of thermal

expansion. Local stresses in the subelements are then expressed as

N
dar+2F,sLs(Gsda,+g,d0) = B;do+ b do. (4)

s=1

This is a system of N equations for the unknown local stresses. Note that the
transformation concentration factors are constant for a given RVE, and easily evaluated by
elastic analysis. The solution of (4) can be readily utilized in evaluation of local and

overall strains as follows:

der = (Mr+ Gr) da'r,
(5)
N
de; = Zc,de,, de® = de—Mdo,

LED]




which gives the overall plastic strain increment under dg. Particularly simple forms of the
above procedure follow for two—phase systems, which are of interest in implementations of
the FDM model.

Additional applications of the uniform field concept have been made in development
of general relations between mechanical and eigenstrain concentration factors, and of
universal connections between overall and phase moduli, and also between coefficients of
the concentration factors themselves (Dvorak 1990). Of particular interest in the present
work is an exact analysis of the effect of thermal hardening in two—phase systems (Dvorak

1991).

2.1.3 Constitutive Equations of the Phases

To reflect the particular inelastic behavior of ductile high—temperature composites,
it is necessary to introduce into the analysis the appropriate viscoplastic constitutive
relations of the constituent phases. We assume the phases to be homogeneous, the matrix
elastically isotropic, and the fiber transversely isotropic. [Either phase may exhibit
nonlinear response under thermomechanical loads which exceed the elastic limit of the
material. In this case, however, the present theory requires the material to be elastically
isotropic.

The total strain rate, ;;j, is divided into elastic, thermal and inelastic components:

. .€ ot -p
€ij = €ij + €ij + €ij . (6)

Considering isotropic materials and assuming the thermoelastic properties to be

temperature—dependent, the elastic and thermal strain rates are given by

E?j = ngkl () w1, (7)




ei = [(d Mija(6)/d6) o + my(9)] 6, (8)
mij(8) = & a*(6), (9)

where @ is the current temperature, ngk1(0) is the elastic compliance, and a*(f) is the
coefficient of thermal expansion.

The inelastic part of the strain is found with the help of a viscoplasticity theory
which incorporates the isothermal formulation by Eisenberg and Yen (1981). Our research
in the past year concentrated on modifying the theory to include thermal loads,
temperature—dependent properties, and thermal time recovery. In what follows, we
summarize the constitutive equations developed for rate—dependent deformation.

We assume the existence of an equilibrium yield surface which is the locus of all
stress states that can be reached form the current state by purely elastic deformation.
Inelastic deformation develops only when the stress point lies outside the equilibrium yield
surface. In the presence of kinematic and isotropic hardening, a Mises form of the current

equilibrium yield surface can be written as
I ) 2/9 —
f=35 (sij aij)(sij aij) (Y+Q)3 =0, (16)

where s;; is the deviatoric stress, a;; denotes the center of the yield surface, Y = Y(6) is
the yield stress in tension, which is independent of the loading rate, and Q is an isotropic
hardening function. The latter can be written as a function of the accumulated inelastic

strain as

- ) = O _e 0Py (1)

p = fdcp = 3-fdeu e8; def, = 0. (12)




Tae functions Qa(0) and q(6) are material parameters and deP is effective inelastic strain

increment.

The equilibrium stress, s3;, which lies on the yield surface, is found from (10) as

2Y(9) + Q(e)*

3(sky - ) (5yy —ay)

]
*
i

(sij ~ aij) + a5 - (13)

The effective overstress, R, is a measure of the distance between the actual stress point, Sij,
and the equilibrium stress point, s3;- It vanishes if the stress point lies on or inside the

yield surface. In particular

R =[5 (s;—s3;)(s55 — st iff>0,  (14)
R =0 iff<0. (15)

The inelastic strain rate is assumed in the form of a power law of the overstress:

. 4]
€ = I 5 k(0) R nij(sy) (16)

where the functions k(6) and p(4) are assumed to be material parameters and nj; is the unit
normal to the equilibrium yield surface (10) at the current equilibrium stress point.

The rate of translation of the center of the yield surface, a;, is expressed as

p(e

1
=% [[H(o)-aQ/aEin] k(6) R

Dy %

- 6Q/80] 2

—e(8) 3 (ay/a) , (17)




a = ()t (18)

Here, H(0) is the tangent modulus of the inelastic stress—strain curve, and vj; specifies the
direction of translation of the yield surface in the absence of static time recovery. This
recovery is given by the second term in (17) and may be active even when the material is
elastic. It is caused by rearrangement of déslocations by climb and recrystallization from

annealing and is more pronounced at high temperatures. The functions c,(f) and m{6) are

material parameters. Thermal recovery effects on the isotropic hardening rate Q (see
eq. (11)) can be also considered in the model; Shah (1991). This is omitted here for
brevity, we note, however, that description of this effect require four additional material
parameters which may depend on temperature.

A bounding surface is used to establish the instantaneous tangent modulus H and to
describe accurately the cyclic behavior of the material, Fig. 3. This surface is derived as an
isotropic expansion of the equilibrium yield surface. During inelastic deformation, the
bounding surface translates in the stress space and exhibits isotropic changes as well.
Translation of the bounding surface is dictated by the requirement that the yield surface
and the bounding surface have a common normal when they become in contact. Details of
this kinematic hardening rule are given by Dafalias and Popov (1976). In analogy with the
equilibrium yield surface, thermal time recovery of isotropic as well as kinematic hardening
of the bounding surface can be included in the model.

The instantaneous tangent modulus, H, is found as a function of the distance, 4,

between the equilibrium stress, st., and a corresponding point on the bounding surface, s;j,

b A
1)?

with unit normal Hij(iij) = ni,-(s;j):

H(6) = Ho(6) + h(0) [¢/(én — 8], (19)




%

b = B (55 — %) (85 ‘sij)] (20)

The parameters Ho(6) and h(4) need to be determined experimentally.

2.1.4 Comparison with Experiments

The preceding theory was used to computed the response of unreinforced Ti—15—3
under uniaxial tension which was tested by Tuttle, Rogacki and Johnson (1990). The tests
were conducted at roomn temperature, 482°C, and 649°C. At each temperature, two
tension tests were performed, one under stress—controlled loading at stress rate of
2.6 MPa/s, the other under strain—controlled loading at strain rate of 1074/s. The
strain—controlled test consisted of a number of loading and relaxation periods. The
objective of this test was to determine the inelastic equilibrium stress—strain curve.

The parameters of the model found by matching the stress—controlled experiments
and the equilibrium response are shown in Table 1. The parameters with top bar
correspond to the bounding surface and have the same meaning of their yield surface
counterparts. For example, Y is the ‘radius’ of the bounding surface, and Qa, q are
material parameters related to the bounding surface isotropic hardening function Q which
is similar in form to the yield surface isotropic hardening function Q given in eq. (11).

The measured and computed responses are shown in Figs. 46 for the
stress—controlled tests and Figs. 7-9 for the strain—controlled tests. The agreement is
remarkably satisfactory. In particular, the theory replicates the descending portions of the
stress—strain curves under strain—controlled loading when the specimen is reloaded

following each relaxation period, Figs. 7-9.

10




2.1.5 Rate Dependent Analysis of Metal Matrix Composite Systems

The elastic deformation region of fibrous composites with metallic matrices is
reduced considerably at high temperatures. The individual phases, and hence the
composite aggregate become sensitive to the rate at which the overall temperature or
mechanical loads are applied and to other time dependent processes. Under sustained
loads, the response of these materials is also time dependent.

The local fields arising in the composite during thermomechanical loading are highly
nonuniform. As a result, stress and strain rates may vary from point to point in the
material, with the steepest gradients occurring at the interface between the fiber and the
matrix. These nonuniformities and gradients in local stress rates affect the overall loading
of the composite, those regions with very high stress or strain rates remain stiff as a result
of the dependence of instantaneous properties on the loading rates. This may cause even
higher stress concentrations in these areas, which are usually close to the interface of the
fiber and matrix, and may result in debonding or matrix cracking. Again, during overall
relaxation or creep, high inelastic strain rates will exist in the same regions due to effect of
prior loading history. This results in a redistribution of stresses within the phases which is
then bound to have an effect on the subsequent overall behavior.

All these aspects of high temperature deformation of metal matrix composites must
be considered in structural analysis. The only recourse in this case is the use of
micromechanics and in particular those models which assume nonuniform or at most
piecewise uniform local fields. @ The response of silicon carbide—titanium 15-3
unidirectional composites, at high temperatures, was analyzed using the periodic hexagonal
array (PHA) model outlined in Fig. 1. The thermoviscoplastic constitutive theory for the
deformation of the matrix phase recovery developed and tested in §2.1.3, was extended by
Shah (1991) to include thermal time. The temperature dependent material properties
required for the theory were evaluated in op. cit. from experiments on unreinforced

titanium 15-3.
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The thermoviscoplastic constitutive equations were implemented in a subroutine to
be interfaced with the ABAQUS finite element code. The purpose of this subroutine was
to compute the material stiffness and stress increment for a given strain increment. The
purpose was to compute the material stiffness and stress increment for a given strain
increment. The subroutine would be called by the ABAQUS main program at each
integration point in the finite element mesh and for every loading increment. The actual
assembling of element stiffnesses, computation of displacements from the applied nodal
forces and conversion of these into strain increments was performed by the ABAQUS
program. Integration of the overall solution was performed in the main program using the
Newton—Raphson method.

The following information is provided to ABAQUS via UMAT at each material
integration point: Given the stress, total elapsed time, strain increment, time interval in
which the strain increment is applied, temperature at the start of the increment,
temperature increment, and all user defined solution dependent variables at the start of the
increment, the UMAT subroutine must return the stress, and the instantaneous stiffness at
the end of the increment as well as update all solution dependent variables. Solution
dependent variables are those which change with time and affect the computations in the
next increment. Examples are the location and size of the yield and bounding surfaces and
the accumulated inelastic strain.

A flowchart of the overall iteration scheme of ABAQUS is provided in Fig. 10, and
the corresponding overall stress—strain diagram of the Newton—Raphson procedure is
shown in Fig. 11. The steps involved in the entire procedure for computing the overall

response are outlined below:

Step 1: Input material properties, one set at each temperature, mechanical and thermal
loading history, initial temperature, initial time step for global integration and initial time

step for local integration.

12




Step 2: At the start of a global time increment ABAQUS passes a zero strain increment to
UMAT, with all current solution dependent variables and current stress. UMAT computes

the instantaneous stiffness at the current temperature and returns it to ABAQUS.

Step 3: ABAQUS assembles the global stiffness matrix and solves for the unknown nodal
displacements, Auy, due to the loads applied in that increment. The strain increments at
integration points, Ae%, are computed from the displacements using the element shape
functions, and passed into UMAT together with the current solution dependent variables

and current stress.

Step 4: UMAT calculates the strain rate from the strain increment and time step. It then

integrates the constitutive equations based on this strain rate. The stress increment is

. - e . . i . t . .
found by integrating ij = Lijxi(ex1 — el — exi). The solution dependent variables are

updated and the instantaneous stiffness is computed and returned to ABAQUS.

Step 5: ABAQUS computes the off-balance or residual forces, Af‘k, from the stresses
returned by UMAT. The global stiffness is reassembled with the instantaneous local
stiffnesses supplied by UMAT. Displacement, and hence strain increments are computed
from the residual loads. These are added to the strain increment in Step 3, Fig. 11, and
returned to UMAT with the solution dependent variables and total stress that were current

at beginning of Step 3.
Step 6: Step 4 and 5 are repeated until the off—balance forces are less than predefined

tolerance, TOLG, which is set by the user. If the tolerance is not met, the strain

increments computed in Step 5 are added to those computed previously in the same time

13




increment. If the tolerance is met, all variables are updated and Steps 2 through 6 are

repeated for the next time increment.

Two numerical integration schemes for systems of first order ordinary differential
equations of the form y; = f(yy,...yn,t), were used in Step 4 above. One was the explicit
fourth order Rung—Kutta—Fehlberg scheme{ (Burden and Faires, 1985). The other was a
predictor—corrector method for stiff ODEs (Kumar, et al, 1980). A one step Euler method
was used as the predictor and the two step Adam—Bashforth method as the corrector.
Both integration schemes showed no instabilities and provided comparable accuracy on the
overall solution. The fourth order method required six function evaluations per step,
compared to two required for the corrector—predictor scheme. However, the former
allowed for larger time steps for the same accuracy. Yet, in most cases solution time using
the latter was 20—30 percent less.

Figure 12 shows a flow chart for the computations performed by UMAT. The steps
involved are briefly explained below.

Step 1: ABAQUS passes to UMAT the increments of strain, temperature and time, the
current values of stress and other solution dependent variable and the initial time step for
local integration. From this information the strain rate is calculated. If the strain rate is
zero the current instantaneous stiffness is returned, this indicates the beginning of a step.

If the strain rate is non—zero then UMAT proceeds to perform the numerical integration.

Step 2: The yield condition is checked, if it is not violated then an elastic analysis is
performed, Step 3, otherwise the inelastic equations are integrated Step 4.

Step 3: Elastic analysis. The new stress and other solution dependent variables are

comouted, the time step, At, is increased, and all variables updated. Step 2 is repeated
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until the entire time increment, AT, is covered.

Step 4: Inelastic analysis. Computation of the overstress; unit normal, equilibrium stress,
plastic tangent modulus, inelastic strain rate, stress rate, translation rates of the yield and
bounding surfaces and the rate of isotropic hardening is performed in this order.

For the Runge—Kutta—Fehlberg method the local truncation error, in the effective
inelastic strain rate is divided by the effective inelastic strain rate and compared against a

present tolerance,

In the case of the predictor—corrector scheme the error is defined as

Zin Zin l
€ - €
corrector predictor
e = - <TOL.
—in
| €correctorl

If the tolerance is met the variables are updated and the time step increased. Step 2 is
then repeaied till the entire time increment is covered. If the error is larger than the

tolerance, the time step is suitably reduced and Step 4 is repeated.

Step 5: At the end of the time increment, AT, the instantaneous stiffness is computed and

returned to ABAQUS with the updated stress and solution dependent variable.

A description and listing of the UMAT subroutine which implements the above
algorithm is presented in Shah (1991).
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2.1.6 Numerical and Experimental Results

The periodic array finite element model, together with the thermoviscoplastic
constitutive equations, were used to predict the rate dependent behavior of a unidirectional
SCS6/Ti—15—3 composite at high temperatures. Experimental data for comparison was
provided by Tuttle et al. (1990). Test specimens were manufactured by hot—pressing
Ti—15-3 foils between unidirectional tapes of silicon carbide fibers. The diameter of the
fibers was 0.14 mm, and the fiber volume content of the composite was 32 percent.
Material properties of titanium, for the numerical analysis, were evaluated by fitting
experimental data obtained at elevated temperatures from unreinforced specimens. These
neat matrix specimens were manufactured by the same process as the composite and so are
expected to represent the in situ properties of the matrix in the reinforced specimens. The
SCS6 fibers were found to remain elastic in the temperature range considered here. The
finite element mesh used for the analysis is shown in Fig. 1.

The first specimen was subjected to a multistep creep test at a temperature of
566°C. Loading was in the direction of the fiber. Figure 13 shows the loading history of
axial stress against time in hours. The specimen was allowed to creep at stress levels of
49 MPa, 97 MPa, 167 MPa and 262 MPa with hold time of 1.35, 1.42, 17.20 and 5.11 hours
respectively. The computed strain in the axial direction is compared to the experimental
record in Fig. 14. The onset of the creep strain is marked in the figure each stress level.
For each stress level, the axial strain computed immediately after application of the
sustained stress magnitude was drawn to match the strain found in the experiment. In this
way, any errors that might have accumulated during application of the overall stress have
been subtracted.

Almost no creep strain was measured at the lowest stress of 49 MPa. As expected,
both experiment and calculations show an increase in creep rate with increase in the overall
stress increment. In general, the numerical model predicted higher rates in the early stages

of each step compared to those measured experimentally, however the total creep strains in
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each step were comparable. Some noise in the experimental data appears in the figure and
is attributed to equipment limitations.

In the second experiment, a cyclic strain controlled test was performed at 650°C.
The specimen was loaded in the fiber direction at a rate of 10-4/sec to a total strain of
6500 = 10-8, unloaded at the same rate to 2600 = 10-¢ and then reloaded at a higher rate of
10-3/sec to 6500 x 106. A comparison of the measured and computed stress—strain
response is shown in Fig. 15. Qualitatively, there is a good agreement between the two,
however a stiffer response in predicted from the simulation. Both the experimental data
and calculations reach a higher stress at the end of the second cycle as compared to the
first, for the same strain level. This is obviously due to the increase in strain rate.

From the limited available experimental data, at elevated temperatures, for the
SCS6/Ti—15—3 composite system, it appears that the thermoviscoplastic composite model
developed here does predict the actual response fairly well.

2.2 Fatigue Damage in Metal Matrix Composites

Experiments suggest that cyclic loading of metal matrix composites may not lead to
fracture, but it results in a substantial reduction of laminate elastic stiffness depending on
the applied stress amplitude. The two major causes of stiffness reduction consist of matrix
cracks parallel to the fibers and matrix cracks transverse to the fibers. The observed loss of
stiffness associated with the matrix cracks transverse to the fibers. The observed loss of
stiffness associated with the matrix cracking in unidirectional B/Al composites and
laminates cycled under constant amplitude (Dvorak and Johnson 1980) indicates that
damage develops only if the load amplitude reaches a certain magnitude in a given
laminate, and that the stiffness loss terminates in a saturation damage stat after a certain

number of cycles.
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Our research developed a failure damage theory with regard to the aforementioned
experimental observations. The model recognizes the relation between cyclic plastic
straining and damage growth in metal matrix composites, which was described in our
previous work (Dvorak and Wung 1988), and focuses on evaluation of the type and extent
of damage in individual plies of the laminate, required to reach a shakedown state under a
prescribed program of variable cyclic loading. Our choice of micromechanical models is
motivated, in part, by experimental observations of the crack systems in individual plies of
fatigued laminates. Of course, a detailed description of the actual damage geometry would
be quite difficult. Instead, for modeling purposes, the mode of damage that is expected to
develop in a given ply is derived from a bimodal damage theory that identifies crack
systems associated with the fiber—dominated (FDM) or matrix—dominated (MDM) modes
of the analogous bimodal plasticity theory of plastic deformation of fibrous plies, proposed
by Dvorak and Bahei—El-Din (1987). An examination of the plastic straining and crack
growth processes leads to the conclusion that the actual saturation damage state
corresponds 10 a minimum amount of damage required for shakedown of the laminate.
Appropriate crack density measure are introduced, and the total crack demsity in the
laminate is identified with an objective function that is minimized with an optimization
scheme that involves physically based nonlinear constraints in a general loading domain
(Dvorak, Lagoudas and Huang 1990b). The analysis evaluates stiffness changes in the
saturation state and also yields estimates of the average stresses in fibers of the damaged
composite.

A comparison of the theoretical predictions indicated by the present optimization
procedure, with experiments conducted by Dvorak and Johnson (1980) is given in Fig. 16
for a (0/90),, laminate and in Fig. 17 for a (0/+45/90/0/+45/490),, laminate. The
correlation is quite good for the whole range of stress amplitudes applied in the
optimization scheme, as it can be seen from the figures. We note that the optimization

scheme may be come unstable if the applied stress amplitude becomes too large. Moreover,
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the analysis itself may not be applicable if the maximum stress approaches about 90% of
the endurance limit, due to the experimentally detected frequency of fiber breaks.

As the composite’s endurance limit is approached, damage development in the
matrix almost unloads completely the matrix and transfers the applied loading to the
fibers. The composite will eventually fail when the endurance limit of the fibers in the 0°
plies as a function of the maximum applied overall stress for the (0/90)s,
(0/+45/90/0/+45/490)3s laminates and a 0s unidirectional in Fig. 18. The maximum
applied stress ranges from zero up to the endurance limit of the laminate as reported by
Dvorak and Johnson (1980) (the endurance limit of the O is taken to be 800 MPa, of the
(0/90)2s is 500 MPa and of the (0/+45/90/0/+45/490)2 laminate indicates extrapolation
from the last computed point that corresponds to 325 MPa. Taking into consideration the
scattering in the experimental data for the endurance limit of the various laminates, the
maximum fiber stress (fiber endurance limit) may be approximated by the average of the

maximum fiber stresses in the three cases of Fig. 18.
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3. EXPERIMENTAL WORK

3.1 Equipment

Under partial support from this grant, we have acquired a new high temperature
testing facility for biaxial loading of composite thin—walled tube specimens. Mechanical
loads are applied by a MTS axial-torsion servohydraulic machine. The maximum loads
are # 225 KN axial, and 2.8 KN—m in torsion. An IBM 386 microcomputer is connected to
the testing system for data acquisition and load control.

Test temperatures are provided and controlled by a resistive furnace manufactured
by CM Furnaces, Inc. This is a vertical tube furnace which splits open along a vertical
axis to wrap around the specimen. The unit consists of three independent heating zones
placed on top of each other. The center zone is 2" long and the top and bottom zones are
each 1" long. The resistive heaters are made of platinum rhodium 60/40 0.020" diameter
wire. The inner diameter of the furnace is 2" and the outer diameter about 10" which
enables the furnace to be accommodated in the existing MTS machine frame. The overall
height of the furnace is approximately 6". The maximum operating temperature of the
furnace is 1400°C. The temperature gradient along the length of the center zone, where
the strain measurements are usually made, was evaluated by heating a steel tube with
thermocouples connected to its inner and outer surfaces. At 1000°C, the temperature in
the gage area was 1000 + 2°C.

Strain measurements are made with a biaxial MTS extensometer.  The
extensometer is water cooled and can be used in conjunction with quartz connecting rods
which make it possible to operate at 1000°C or with ceramic rods that can operate at
1200°C. The extensometer rod ends contact single points on the tubular specimen wall and
pivot on them to measure extension and rotation. The contact points require small

dimples be imprinted on the specimen to avoid any slippage during test. To prevent
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damaging the composite specimen, the required dimples will be imprinted on small tabs
made of ceramic cement and affixed to the specimen. The gage length of the extensometer
is 1" and the operating ranges are + 0.1" in the axial direction and + 5° in the torsional
direction. However, the maximum windup at the contact points is + 10° which dictates on
the torsional range which we can measure with our tubular specimen. The strain ranges
computed from the above values are + 10% for the normal strain in the axial direction, and

+ 1.5% for the longitudinal shear strain.

3.2  Specimens

The composite system selected for this project is a nickel base Waspaloy matrix
reinforced by GE 218 tungsten wire. This system was selected based on experience gained
during fabrication of flat specimens of the same system by Westinghouse. Last year, we
contracted Westinghouse for fabrication of thin wall tubular specimens for this project.
Fiber volume fraction was specified as 0.35 and the number of plies as 5. The specimen
diameter (1.25") and length (15") were selected to conform with the equipment described
above and with gripping outside the furnace. Delivery of the specimen was delayed several
times due to inability of General Electric to provide 3D tungsten wire, and due to the lack
of a standard procedure for making superalloy matrix composite tubes. The tubes were
finally delivered in early 1992. The report by Blankenship (1992) in the enclosure describes
the manufacturing procedure. The tubes will be tested under the forthcoming AFOSR

grant, in the summer—fall period of 1992.
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Table 1 Parameters used in prediction of Ti—15—3 behavior

Material Units 27 C 482°C 649°C
Property
E GPa 92.4 72.2 55.0
v 0.351 0.351 0.351
Y MPa 810 250 52.5
H, MPa 1400 60 50
h GPa 40 90 52
Y MPa 930 870 278
p 9.95 2.45 1.43
k (MPa)P/;  7.6x1020 4.2x107 3.2x10-8
Qa MPa -120 —9220 -30
Qs MPa 50 1700 95
q 920 7.5 2.61
q 920 7.5 2.61
m, 1.2 1.20 1.35
Cr (MPa) ™"},  1.0x10+ 7.0x104 2.0x104
3 (MPa)™'},  1.0x104 7.0%10 2.0x104
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Fig. 10 Flowchart of global iteration scheme for the ABAQUS finite element
program.
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